Arbeitspapier

Estimation of the signal subspace without estimation of the inverse covariance matrix

Let a high-dimensional random vector X can be represented as a sum of two components - a signal S , which belongs to some low-dimensional subspace S, and a noise component N . This paper presents a new approach for estimating the subspace S based on the ideas of the Non-Gaussian Component Analysis. Our approach avoids the technical difficulties that usually exist in similar methods - it doesn't require neither the estimation of the inverse covariance matrix of X nor the estimation of the covariance matrix of N.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2010-050

Classification
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Subject
dimension reduction
non-Gaussian components
NGCA

Event
Geistige Schöpfung
(who)
Panov, Vladimir
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2010

Handle
Last update
10.03.2025, 11:46 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Panov, Vladimir
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2010

Other Objects (12)