Arbeitspapier

Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions

Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for both statistical problems: nonlinear shrinkage of the eigenvalues of the sample covariance matrix. The optimal nonlinear shrinkage formula depends on unknown population quantities and is thus not available. It is, however, possible to consistently estimate an oracle nonlinear shrinkage, which is motivated on asymptotic grounds. A key tool to this end is consistent estimation of the set of eigenvalues of the population covariance matrix (also known as spectrum), an interesting and challenging problem in its own right. Extensive Monte Carlo simulations demonstrate that our methods have desirable finite-sample properties and outperform previous proposals.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 105

Klassifikation
Wirtschaft
Estimation: General
Thema
large-dimensional asymptotics
covariance matrix eigenvalues
nonlinear shrinkage
principal component analysis
Multivariate Analyse
Varianzanalyse
Theorie

Ereignis
Geistige Schöpfung
(wer)
Ledoit, Olivier
Wolf, Michael
Ereignis
Veröffentlichung
(wer)
University of Zurich, Department of Economics
(wo)
Zurich
(wann)
2013

DOI
doi:10.5167/uzh-70168
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ledoit, Olivier
  • Wolf, Michael
  • University of Zurich, Department of Economics

Entstanden

  • 2013

Ähnliche Objekte (12)