Arbeitspapier
Shrinkage estimation of large covariance matrices: Keep it simple, statistician?
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is to be minimized. We solve the problem of optimal covariance matrix estimation under a variety of loss functions motivated by statistical precedent, probability theory, and differential geometry. A key ingredient of our nonlinear shrinkage methodology is a new estimator of the angle between sample and population eigenvectors, without making strong assumptions on the population eigenvalues. We also introduce a broad family of covariance matrix estimators that can handle all regular functional transformations of the population covariance matrix under large-dimensional asymptotics. In addition, we compare via Monte Carlo simulations our methodology to two simpler ones from the literature, linear shrinkage and shrinkage based on the spiked covariance model.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 327
- Klassifikation
-
Wirtschaft
Estimation: General
- Thema
-
Large-dimensional asymptotics
random matrix theory
rotation equivariance
Kovarianzfunktion
Risikomanagement
Verlust
Modellierung
Eigenwert
Monte-Carlo-Simulation
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ledoit, Olivier
Wolf, Michael
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Zurich, Department of Economics
- (wo)
-
Zurich
- (wann)
-
2021
- DOI
-
doi:10.5167/uzh-172202
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Ledoit, Olivier
- Wolf, Michael
- University of Zurich, Department of Economics
Entstanden
- 2021