Arbeitspapier
Estimation of time-varying covariance matrices for large datasets
Unemployment, firm Dynamics, and the Business CyclTime variation is a fundamental problem in statistical and econometric analysis of macroeconomic and financial data. Recently there has been considerable focus on developing econometric modelling that enables stochastic structural change in model parameters and on model estimation by Bayesian or non-parametric kernel methods. In the context of the estimation of covariance matrices of large dimensional panels, such data requires taking into account time variation, possible dependence and heavy-tailed distributions. In this paper we introduce a non-parametric version of regularisation techniques for sparse large covariance matrices, developed by Bickel and Levina (2008) and others. We focus on the robustness of such a procedure to time variation, dependence and heavy-tailedness of distributions. The paper includes a set of results on Bernstein type inequalities for dependent unbounded variables which are expected to be applicable in econometric analysis beyond estimation of large covariance matrices. We discuss the utility of the robust thresholding method, comparing it with other estimators in simulations and an empirical application on the design of minimum variance portfolios.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 916
- Klassifikation
-
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
- Thema
-
covariance matrix estimation
large dataset
regularization
thresholding
shrinkage
exponential inequalities
minimum variance portfolio
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dendramis, Yiannis
Giraitis, Liudas
Kapetanios, George
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen Mary University of London, School of Economics and Finance
- (wo)
-
London
- (wann)
-
2020
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Dendramis, Yiannis
- Giraitis, Liudas
- Kapetanios, George
- Queen Mary University of London, School of Economics and Finance
Entstanden
- 2020