Arbeitspapier

On testing for diagonality of large dimensional covariance matrices

Datasets in a variety of disciplines require methods where both the sample size and the dataset dimensionality are allowed to be large. This framework is drastically different from the classical asymptotic framework where the number of observations is allowed to be large but the dimensionality of the dataset remains fixed. This paper proposes a new test of diagonality for large dimensional covariance matrices. The test is based on the work of John (1971) and Ledoit and Wolf (2002) among others. The theoretical properties of the test are discussed. A Monte Carlo study of the small sample properties of the test indicate that it behaves well under the null hypothesis and has superior power properties compared to an existing test of diagonality for large datasets.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 526

Klassifikation
Wirtschaft
Hypothesis Testing: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Thema
Panel data, Large sample covariance matrix, Maximum eigenvalue
Matrizenrechnung
Varianzanalyse
Korrelation

Ereignis
Geistige Schöpfung
(wer)
Kapetanios, George
Ereignis
Veröffentlichung
(wer)
Queen Mary University of London, Department of Economics
(wo)
London
(wann)
2004

Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kapetanios, George
  • Queen Mary University of London, Department of Economics

Entstanden

  • 2004

Ähnliche Objekte (12)