Arbeitspapier

Robust Inference for Non-Gaussian SVAR models

All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non-Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage for structural functions of the model parameters when deviations from Gaussianity are small. To this extent, we propose a robust semi-parametric approach to conduct hypothesis tests and construct confidence sets for structural functions in SVAR models. The methodology fully exploits non-Gaussianity when it is present, but yields correct size / coverage regardless of the distance to the Gaussian distribution. Empirically we revisit two macroeconomic SVAR studies where we document mixed results. For the oil price model of Kilian and Murphy (2012) we find that non-Gaussianity can robustly identify reasonable confidence sets, whereas for the labour supply-demand model of Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance of using weak identification robust methods to assess estimation uncertainty when using non-Gaussianity for identification.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2022-080/III

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Multiple or Simultaneous Equation Models; Multiple Variables: Other
Model Construction and Estimation
Thema
weak identification
semi-parametric inference
hypothesis testing
impulse responses
independent component analysis

Ereignis
Geistige Schöpfung
(wer)
Hoesch, Lukas
Lee, Adam
Mesters, Geert
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hoesch, Lukas
  • Lee, Adam
  • Mesters, Geert
  • Tinbergen Institute

Entstanden

  • 2022

Ähnliche Objekte (12)