Arbeitspapier
Sieve bootstrap inference for time-varying coefficient models
We propose a sieve bootstrap framework to conduct pointwise and simultaneous inference for time-varying coefficient regression models based on a nonparametric local linear estimator. The asymptotic validity of the sieve bootstrap in the presence of autocorrelation is established. We find that it automatically produces a consistent estimation of nuisance parameters, both at the interior and boundary points. In addition, we develop a bootstrap test for parameter constancy and show that it is asymptotically correctly sized. An extensive simulation study supports our findings. The proposed methods are applied to assess the price development of CO2 certificates in the European Emissions Trading System (EU ETS). We find evidence of time variation in the relationship between allowance prices and their fundamental price drivers.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. TI 2021-107/III
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Energy: Government Policy
Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
- Thema
-
sieve bootstrap
nonparametric estimation
simultaneous confidence bands
energy economics
emission trading
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Friedrich, Marina
Lin, Yicong
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2021
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Friedrich, Marina
- Lin, Yicong
- Tinbergen Institute
Entstanden
- 2021