Arbeitspapier

The R-package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference

This paper presents the R-package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel -- typically a posterior density kernel -- using an adaptive mixture of Student-t densities as approximating density. In the first stage a mixture of Student-t densities is fitted to the target using an expectation maximization (EM) algorithm where each step of the optimization procedure is weighted using importance sampling. In the second stage this mixture density is a candidate density for efficient and robust application of importance sampling or the Metropolis-Hastings (MH) method to estimate properties of the target distribution. The package enables Bayesian inference and prediction on model parameters and probabilities, in particular, for models where densities have multi-modal or other non-elliptical shapes like curved ridges. These shapes occur in research topics in several scientific fields. For instance, analysis of DNA data in bio-informatics, obtaining loans in the banking sector by heterogeneous groups in financial economics and analysis of education's effect on earned income in labor economics. The package MitISEM provides also an extended algorithm, 'sequential MitISEM', which substantially decreases computation time when the target density has to be approximated for increasing data samples.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 15-042/III

Klassifikation
Wirtschaft
Econometrics
Bayesian Analysis: General
Econometric Software
Thema
finite mixtures
Student-t densities
importance sampling
MCMC
Metropolis-Hastings algorithm
expectation maximization
Bayesian inference
R-software

Ereignis
Geistige Schöpfung
(wer)
Basturk, Nalan
Grassi, Stefano
Hoogerheide, Lennart
Opschoor, Anne
van Dijk, Herman K.
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Basturk, Nalan
  • Grassi, Stefano
  • Hoogerheide, Lennart
  • Opschoor, Anne
  • van Dijk, Herman K.
  • Tinbergen Institute

Entstanden

  • 2015

Ähnliche Objekte (12)