Arbeitspapier
Importance sampling for backward SDEs
In this paper we explain how the importance sampling technique can be generalized from simulating expectations to computing the initial value of backward SDEs with Lipschitz continuous driver. By means of a measure transformation we introduce a variance reduced version of the forward approximation scheme by Bender and Denk [4] for simulating backward SDEs. A fully implementable algorithm using the least-squares Monte Carlo approach is developed and its convergence is proved. The success of the generalized importance sampling is illustrated by numerical examples in the context of Asian option pricing under different interest rates for borrowing and lending.
- Sprache
-
Englisch
- Erschienen in
-
Series: CoFE Discussion Paper ; No. 08/11
- Klassifikation
-
Wirtschaft
- Thema
-
BSDE
Numerics
Monte Carlo simulation
Variance reduction
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Bendera, Christian
Moseler, Thilo
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Konstanz, Center of Finance and Econometrics (CoFE)
- (wo)
-
Konstanz
- (wann)
-
2008
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:46 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Bendera, Christian
- Moseler, Thilo
- University of Konstanz, Center of Finance and Econometrics (CoFE)
Entstanden
- 2008