Threshold phenomena for random cones
Abstract: We consider an even probability distribution on the d-dimensional Euclidean space with the property that it assigns measure zero to any hyperplane through the origin. Given N independent random vectors with this distribution, under the condition that they do not positively span the whole space, the positive hull of these vectors is a random polyhedral cone (and its intersection with the unit sphere is a random spherical polytope). It was first studied by Cover and Efron. We consider the expected face numbers of these random cones and describe a threshold phenomenon when the dimension d and the number N of random vectors tend to infinity. In a similar way we treat the solid angle, and more generally the Grassmann angles. We further consider the expected numbers of k-faces and of Grassmann angles of index d−k when also k tends to infinity
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
ISSN: 1432-0444
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2023
- Urheber
- DOI
-
10.1007/s00454-021-00323-2
- URN
-
urn:nbn:de:bsz:25-freidok-2368032
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:41 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Hug, Daniel
- Schneider, Rolf
- Universität
Entstanden
- 2023