A weighted Minkowski theorem for pseudo-cones

Abstract: A nonempty closed convex set in , not containing the origin, is called a pseudo-cone if with every x it also contains λx for . We consider pseudo-cones with a given recession cone C, called C-pseudo-cones. The family of C-pseudo-cones can, with reasonable justification, be considered as a counterpart to the family of convex bodies containing the origin in the interior. For a C-pseudo-cone one can naturally define a surface area measure and a covolume. Since they are in general infinite, we introduce a weighting, leading to modified versions of surface area and covolume. These are finite and still homogeneous, though of other degrees. Our main result is a Minkowski type existence theorem for C-pseudo-cones with given weighted surface area measure

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Advances in mathematics. - 450 (2024) , 109760, ISSN: 1090-2082

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber

DOI
10.1016/j.aim.2024.109760
URN
urn:nbn:de:bsz:25-freidok-2515416
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)