Arbeitspapier

Bayesian Analysis of ARMA Models

Root cancellation in Auto Regressive Moving Average (ARMA) models leads tolocal non-identification of parameters. When we use diffuse or normal priorson the parameters of the ARMA model, posteriors in Bayesian analyzes show ana posteriori favor for this local non-identification. We show that the priorand posterior of the parameters of an ARMA model are the (unique)conditional density of a prior and posterior of the parameters of anencompassing AR model. We can therefore specify priors and posteriors on theparameters of the encompassing AR model and use the prior and posterior thatit implies on the parameters of the ARMA model, and vice versa. Theposteriors of the ARMA parameters that result from standard priors on theparameters of an encompassing AR model do not lead to an a posteriori favorof root cancellation. We develop simulators to generate parameters fromthese priors and posteriors. As a byproduct, Bayes factors can be computedto compare (non-nested) parsimonious ARMA models. The procedures are appliedto the (extended) Nelson-Plosser data. For approximately 50% of the seriesan ARMA model is favored above an AR model.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 00-027/4

Klassifikation
Wirtschaft
Thema
Theorie
ARMA-Modell

Ereignis
Geistige Schöpfung
(wer)
Kleibergen, Frank R.
Hoek, Henk
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2000

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kleibergen, Frank R.
  • Hoek, Henk
  • Tinbergen Institute

Entstanden

  • 2000

Ähnliche Objekte (12)