Arbeitspapier

Testing for Integration using Evolving Trend and Seasonals Models: A Bayesian Approach

In this paper, we make use of state space models toinvestigate the presence of stochastic trends in economic time series. Amodel is specified where such a trend can enter either in the autoregressiverepresentation or in a separate state equation. Tests based on the formerare analogous to Dickey-Fuller tests of unit roots, while the latter areanalogous to KPSS tests of trend-stationarity. We use Bayesian methods tosurvey the properties of the likelihood function in such models and tocalculate posterior odds ratios comparing models with and without stochastictrends. We extend these ideas to the problem of testing for integration atseasonal frequencies and show how our techniques can be used to carry outBayesian variants of either the HEGY or Canova-Hansen test. Stochasticintegration rules, based on Markov Chain Monte Carlo, as well asdeterministic integration rules are used. Strengths and weaknesses of eachapproach are indicated.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 99-072/4

Classification
Wirtschaft
Subject
State space models
Bayes Factor
Gibbs sampler
unit root
seasonality
Zeitreihenanalyse
Schätztheorie
Theorie
Saisonbereinigung

Event
Geistige Schöpfung
(who)
Koop, Gary
van Dijk, Herman K.
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
1999

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Koop, Gary
  • van Dijk, Herman K.
  • Tinbergen Institute

Time of origin

  • 1999

Other Objects (12)