Arbeitspapier

Bayesian Analysis of ARMA Models

Root cancellation in Auto Regressive Moving Average (ARMA) models leads tolocal non-identification of parameters. When we use diffuse or normal priorson the parameters of the ARMA model, posteriors in Bayesian analyzes show ana posteriori favor for this local non-identification. We show that the priorand posterior of the parameters of an ARMA model are the (unique)conditional density of a prior and posterior of the parameters of anencompassing AR model. We can therefore specify priors and posteriors on theparameters of the encompassing AR model and use the prior and posterior thatit implies on the parameters of the ARMA model, and vice versa. Theposteriors of the ARMA parameters that result from standard priors on theparameters of an encompassing AR model do not lead to an a posteriori favorof root cancellation. We develop simulators to generate parameters fromthese priors and posteriors. As a byproduct, Bayes factors can be computedto compare (non-nested) parsimonious ARMA models. The procedures are appliedto the (extended) Nelson-Plosser data. For approximately 50% of the seriesan ARMA model is favored above an AR model.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 00-027/4

Classification
Wirtschaft
Subject
Theorie
ARMA-Modell

Event
Geistige Schöpfung
(who)
Kleibergen, Frank R.
Hoek, Henk
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2000

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kleibergen, Frank R.
  • Hoek, Henk
  • Tinbergen Institute

Time of origin

  • 2000

Other Objects (12)