Arbeitspapier

Efficient Bayesian Estimation and Combination of GARCH-Type Models

This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the posterior density of the model parameters. This density is then used in importance sampling for model estimation, model selection and model combination. The procedure is fully automatic which avoids difficult and time consuming tuning of MCMC strategies. The AdMitIS methodology is illustrated with an empirical application to S&P index log-returns. Several non-nested GARCH-type models are estimated and combined to predict the distribution of next-day ahead log-returns.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 10-046/4

Classification
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Subject
GARCH
marginal likelihood
Bayesian model averaging
adaptive mixture of Student-t distributions
importance sampling
ARCH-Modell
Bayes-Statistik
Statistische Verteilung
Statistisches Auswahlverfahren
Theorie

Event
Geistige Schöpfung
(who)
Ardia, David
Hoogerheide, Lennart F.
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2010

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Ardia, David
  • Hoogerheide, Lennart F.
  • Tinbergen Institute

Time of origin

  • 2010

Other Objects (12)