Arbeitspapier

Efficient Bayesian Estimation and Combination of GARCH-Type Models

This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the posterior density of the model parameters. This density is then used in importance sampling for model estimation, model selection and model combination. The procedure is fully automatic which avoids difficult and time consuming tuning of MCMC strategies. The AdMitIS methodology is illustrated with an empirical application to S&P index log-returns. Several non-nested GARCH-type models are estimated and combined to predict the distribution of next-day ahead log-returns.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 10-046/4

Klassifikation
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
GARCH
marginal likelihood
Bayesian model averaging
adaptive mixture of Student-t distributions
importance sampling
ARCH-Modell
Bayes-Statistik
Statistische Verteilung
Statistisches Auswahlverfahren
Theorie

Ereignis
Geistige Schöpfung
(wer)
Ardia, David
Hoogerheide, Lennart F.
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ardia, David
  • Hoogerheide, Lennart F.
  • Tinbergen Institute

Entstanden

  • 2010

Ähnliche Objekte (12)