Arbeitspapier

Bayesian Analysis of Realized Matrix-Exponential GARCH Models

The paper develops a new realized matrix-exponential GARCH (MEGARCH) model, which uses the information of returns and realized measure of co-volatility matrix simultaneously. The paper also considers an alternative multivariate asymmetric function to develop news impact curves. We consider Bayesian MCMC estimation to allow non-normal posterior distributions. For three US financial assets, we compare the realized MEGARCH models with existing multivariate GARCH class models. The empirical results indicate that the realized MEGARCH models outperform the other models regarding in-sample and out-of-sample performance. The news impact curves based on the posterior densities provide reasonable results.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2018-005/III

Klassifikation
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
Multivariate
GARCH
Realized
Measures
Matrix-Exponential
Bayesian
Markov
Chain
Monte
Carlo
method
Asymmetry

Ereignis
Geistige Schöpfung
(wer)
Asai, Manabu
McAleer, Michael
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Asai, Manabu
  • McAleer, Michael
  • Tinbergen Institute

Entstanden

  • 2018

Ähnliche Objekte (12)