Arbeitspapier
Intercept Estimation in Nonlinear Selection Models
We propose various semiparametric estimators for nonlinear selection models, where slope and intercept can be separately identifed. When the selection equation satisfies a monotonic index restriction, we suggest a local polynomial estimator, using only observations for which the marginal distribution of instrument index is close to one. Such an estimator achieves a univariate nonparametric rate, which can range from a cubic to an 'almost' parametric rate. We then consider the case in which either the monotonic index restriction does not hold and/ or the set of observations with propensity score close to one is thin so that convergence occurs at most at a cubic rate. We explore the finite sample behaviour in a Monte Carlo study, and illustrate the use of our estimator using a model for count data with multiplicative unobserved heterogeneity.
- Sprache
-
Englisch
- Erschienen in
-
Series: IZA Discussion Papers ; No. 14364
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
- Thema
-
irregular identification
selection bias
local polynomial
trimming
count data
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Arulampalam, Wiji
Corradi, Valentina
Gutknecht, Daniel
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute of Labor Economics (IZA)
- (wo)
-
Bonn
- (wann)
-
2021
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Arulampalam, Wiji
- Corradi, Valentina
- Gutknecht, Daniel
- Institute of Labor Economics (IZA)
Entstanden
- 2021