Arbeitspapier

Semiparametric Estimation of a Binary Choice Model with Sample Selection

In this paper we provide semiparametric estimation strategies for a sample selection model with a binary dependent variable. To the best of our knowledge, this has not been done before. We propose a control function approach based on two di erent identifying assumptions. This gives rise to semiparametric estimators which are extensions of the Klein and Spady (1993), maximum score (Manski, 1975) and smoothed maximum score (Horowitz, 1992) estimators. We provide Monte Carlo evidence and an empirical example to study the nite sample properties of our estimators. Finally, we outline an extension of these estimators to the case of endogenous covariates.

Sprache
Englisch

Erschienen in
Series: Diskussionsbeitrag ; No. 505

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Thema
Sample selection model
binary dependent variable
semiparametric estimation
control function approach
endogenous covariates

Ereignis
Geistige Schöpfung
(wer)
Schwiebert, Jörg
Ereignis
Veröffentlichung
(wer)
Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
(wo)
Hannover
(wann)
2012

Handle
Letzte Aktualisierung
20.09.2024, 08:24 MESZ

Objekttyp

  • Arbeitspapier

Beteiligte

  • Schwiebert, Jörg
  • Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät

Entstanden

  • 2012

Ähnliche Objekte (12)