Arbeitspapier
Nonparametric estimation in a nonlinear cointegration type model
We derive an asymptotic theory of nonparametric estimation for an nonlinear transfer function model Z(t) = f (Xt) + Wt where {Xt} and {Zt} are observed nonstationary processes and {Wt} is a stationary process. IN econometrics this can be interpreted as a nonlinear cointegration type relationship, but we believe that our results have wider interest. The class of nonstationary processes allowed for {Xt} is a subclass of the class of null recurrent.. Markov chains. This subclass contains the random walk model and the unit root processes. WE derive the asymptotics of an nonparametric estimate of f(z) under two alternative sets of assumptions on {Wt}: i) {Wt} is a linear process ii) {Wt} is a Markov chain satisfying some mixing conditions. The latter requires considerably more work but also holds larger promise for further developments. The finite sample properties f(x) are studied via a set of simulation experiments.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 373 Discussion Paper ; No. 2000,33
- Klassifikation
-
Wirtschaft
- Thema
-
cointegration
nonstationary time series models
null recurrent Markov chain
nonparametric kernel estimators
transfer function model
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Karlsen, Hans Arnfinn
Myklebust, Terje
Tjøstheim, Dag
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
- (wo)
-
Berlin
- (wann)
-
2000
- Handle
- URN
-
urn:nbn:de:kobv:11-10047396
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Karlsen, Hans Arnfinn
- Myklebust, Terje
- Tjøstheim, Dag
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Entstanden
- 2000