Arbeitspapier

A Comparison of Parametric, Semi-nonparametric, Adaptive, and Nonparametric Cointegration Tests

This paper provides an extensive Monte-Carlo comparison of severalcontemporary cointegration tests. Apart from the familiar Gaussian basedtests of Johansen, we also consider tests based on non-Gaussianquasi-likelihoods. Moreover, we compare the performance of these parametrictests with tests that estimate the score function from the data using eitherkernel estimation or semi-nonparametric density approximations. Thecomparison is completed with a fully nonparametric cointegration test. Insmall samples, the overall performance of the semi-nonparametric approachappears best in terms of size and power. The main cost of thesemi-nonparametric approach is the increased computation time. In largesamples and for heavily skewed or multimodal distributions, the kernel basedadaptive method dominates. For near-Gaussian distributions, however, thesemi-nonparametric approach is preferable again.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 99-012/4

Klassifikation
Wirtschaft
Thema
Schätztheorie
Theorie

Ereignis
Geistige Schöpfung
(wer)
Boswijk, H. Peter
Lucas, Andre
Taylor, Nick
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
1999

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Boswijk, H. Peter
  • Lucas, Andre
  • Taylor, Nick
  • Tinbergen Institute

Entstanden

  • 1999

Ähnliche Objekte (12)