Arbeitspapier
Robust estimation in nonlinear regression and limited dependent variable models
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data and are less efficient. A third possible estimation approach is based on the theory of robust statistics, which builds upon parametric specification, but provides a methodology for designing misspecification-proof estimators. However, this concept, developed in statistics, has so far been applied almost exclusively to linear regression models. Therefore, I adapt some robust methods, such as least trimmed squares, to nonlinear and limited-dependent variable models. This paper presents the adapted robust estimators, proofs of their consistency, suitable computational methods, as well as examples of regression models which the proposed estimators can be applied to.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 373 Discussion Paper ; No. 2001,100
Estimation: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
limited-dependent-variable models
nonlinear regression
robust estimation
- Handle
- URN
-
urn:nbn:de:kobv:11-10051178
- Letzte Aktualisierung
-
20.09.2024, 08:22 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Čížek, Pavel
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Entstanden
- 2001