Artikel
Cluster robust covariance matrix estimation in panel quantile regression with individual fixed effects
This study develops cluster robust inference methods for panel quantile regression (QR) models with individual fixed effects, allowing for temporal correlation within each individual. The conventional QR standard errors can seriously underestimate the uncertainty of estimators and, therefore, overestimate the significance of effects, when outcomes are serially correlated. Thus, we propose a clustered covariance matrix (CCM) estimator to solve this problem. The CCM estimator is an extension of the heteroskedasticity and autocorrelation consistent covariance matrix estimator for QR models with fixed effects. The autocovariance element in the CCM estimator can be substantially biased, due to the incidental parameter problem. Thus, we develop a bias-correction method for the CCM estimator. We derive an optimal bandwidth formula that minimizes the asymptotic mean squared errors, and propose a data-driven bandwidth selection rule. We also propose two cluster robust tests, and establish their asymptotic properties. We then illustrate the practical usefulness of the proposed methods using an empirical application.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 11 ; Year: 2020 ; Issue: 2 ; Pages: 579-608 ; New Haven, CT: The Econometric Society
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
- Thema
-
Cluster robust standard errors
quantile regression
panel data
heteroskedasticity and autocorrelation consistent covariance matrix estimation
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Yoon, Jungmo
Galvão Júnior, Antônio Fialho
- Ereignis
-
Veröffentlichung
- (wer)
-
The Econometric Society
- (wo)
-
New Haven, CT
- (wann)
-
2020
- DOI
-
doi:10.3982/QE802
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Yoon, Jungmo
- Galvão Júnior, Antônio Fialho
- The Econometric Society
Entstanden
- 2020