About the mechanical strength of calcium phosphate cement scaffolds

Abstract: For the treatment of bone defects, biodegradable, compressive biomaterials are needed as replacements that degrade as the bone regenerates. The problem with existing materials has either been their insufficient mechanical strength or the excessive differences in their elastic modulus, leading to stress shielding and eventual failure. In this study, the compressive strength of CPC ceramics (with a layer thickness of more than 12 layers) was compared with sintered β-TCP ceramics. It was assumed that as the number of layers increased, the mechanical strength of 3D-printed scaffolds would increase toward the value of sintered ceramics. In addition, the influence of the needle inner diameter on the mechanical strength was investigated. Circular scaffolds with 20, 25, 30, and 45 layers were 3D printed using a 3D bioplotter, solidified in a water-saturated atmosphere for 3 days, and then tested for compressive strength together with a β-TCP sintered ceramic using a Zwick universal testing machine. The 3D-printed scaffolds had a compressive strength of 41.56 ± 7.12 MPa, which was significantly higher than that of the sintered ceramic (24.16 ± 4.44 MPa). The 3D-printed scaffolds with round geometry reached or exceeded the upper limit of the compressive strength of cancellous bone toward substantia compacta. In addition, CPC scaffolds exhibited more bone-like compressibility than the comparable β-TCP sintered ceramic, demonstrating that the mechanical properties of CPC scaffolds are more similar to bone than sintered β-TCP ceramics

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Designs. - 7, 4 (2023) , 87, ISSN: 2411-9660

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2023
Creator
Bertrand, Elisa
Zankovic, Sergej
Vinke, Johannes
Schmal, Hagen
Seidenstücker, Michael

DOI
10.3390/designs7040087
URN
urn:nbn:de:bsz:25-freidok-2380041
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:45 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2023

Other Objects (12)