Artikel

Importance sampling in the presence of PD-LGD correlation

This paper seeks to identify computationally efficient importance sampling (IS) algorithms for estimating large deviation probabilities for the loss on a portfolio of loans. Related literature typically assumes that realised losses on defaulted loans can be predicted with certainty, i.e., that loss given default (LGD) is non-random. In practice, however, LGD is impossible to predict and tends to be positively correlated with the default rate and the latter phenomenon is typically referred to as PD-LGD correlation (here PD refers to probability of default, which is often used synonymously with default rate). There is a large literature on modelling stochastic LGD and PD-LGD correlation, but there is a dearth of literature on using importance sampling to estimate large deviation probabilities in those models. Numerical evidence indicates that the proposed algorithms are extremely effective at reducing the computational burden associated with obtaining accurate estimates of large deviation probabilities across a wide variety of PD-LGD correlation models that have been proposed in the literature.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 1 ; Pages: 1-36 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
acceptance-rejection sampling
credit risk
importance sampling
large deviation probabilities
loss probabilities
PD-LGD correlation
portfolio credit risk
stochastic recovery
tail probabilities

Ereignis
Geistige Schöpfung
(wer)
Metzler, Adam
Scott, Alexandre
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/risks8010025
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Metzler, Adam
  • Scott, Alexandre
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)