Artikel

A review on variable selection in regression analysis

In this paper, we investigate several variable selection procedures to give an overview of the existing literature for practitioners. 'Let the data speak for themselves' has become the motto of many applied researchers since the number of data has significantly grown. Automatic model selection has been promoted to search for data-driven theories for quite a long time now. However, while great extensions have been made on the theoretical side, basic procedures are still used in most empirical work, e.g., stepwise regression. Here, we provide a review of main methods and state-of-the art extensions as well as a topology of them over a wide range of model structures (linear, grouped, additive, partially linear and non-parametric) and available software resources for implemented methods so that practitioners can easily access them. We provide explanations for which methods to use for different model purposes and their key differences. We also review two methods for improving variable selection in the general sense.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 6 ; Year: 2018 ; Issue: 4 ; Pages: 1-27 ; Basel: MDPI

Klassifikation
Wirtschaft
Econometric Modeling: General
Econometric Modeling: Other
Thema
variable selection
automatic modelling
sparse models

Ereignis
Geistige Schöpfung
(wer)
Desboulets, Loann David Denis
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2018

DOI
doi:10.3390/econometrics6040045
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Desboulets, Loann David Denis
  • MDPI

Entstanden

  • 2018

Ähnliche Objekte (12)