Artikel

Interpretation and semiparametric efficiency in quantile regression under misspecification

Allowing for misspecification in the linear conditional quantile function, this paper provides a new interpretation and the semiparametric efficiency bound for the quantile regression parameter b(t) in Koenker and Bassett (1978). The first result on interpretation shows that under a mean-squared loss function, the probability limit of the Koenker-Bassett estimator minimizes a weighted distribution approximation error, defined as FY(X'b(t)/X)-t, i.e., the deviation of the conditional distribution function, evaluated at the linear quantile approximation, from the quantile level. The second result implies that the Koenker-Bassett estimator semiparametrically efficiently estimates the quantile regression parameter that produces parsimonious descriptive statistics for the conditional distribution. Therefore, quantile regression shares the attractive features of ordinary least squares: interpretability and semiparametric efficiency under misspecification.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 1 ; Pages: 1-14 ; Basel: MDPI

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Subject
semiparametric efficiency bounds
misspecification
conditional quantile function
conditional distribution function
best linear approximation

Event
Geistige Schöpfung
(who)
Lee, Ying-Ying
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2016

DOI
doi:10.3390/econometrics4010002
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Lee, Ying-Ying
  • MDPI

Time of origin

  • 2016

Other Objects (12)