Artikel
Interpretation and semiparametric efficiency in quantile regression under misspecification
Allowing for misspecification in the linear conditional quantile function, this paper provides a new interpretation and the semiparametric efficiency bound for the quantile regression parameter b(t) in Koenker and Bassett (1978). The first result on interpretation shows that under a mean-squared loss function, the probability limit of the Koenker-Bassett estimator minimizes a weighted distribution approximation error, defined as FY(X'b(t)/X)-t, i.e., the deviation of the conditional distribution function, evaluated at the linear quantile approximation, from the quantile level. The second result implies that the Koenker-Bassett estimator semiparametrically efficiently estimates the quantile regression parameter that produces parsimonious descriptive statistics for the conditional distribution. Therefore, quantile regression shares the attractive features of ordinary least squares: interpretability and semiparametric efficiency under misspecification.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 1 ; Pages: 1-14 ; Basel: MDPI
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
- Subject
-
semiparametric efficiency bounds
misspecification
conditional quantile function
conditional distribution function
best linear approximation
- Event
-
Geistige Schöpfung
- (who)
-
Lee, Ying-Ying
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2016
- DOI
-
doi:10.3390/econometrics4010002
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Lee, Ying-Ying
- MDPI
Time of origin
- 2016