Artikel

Causal random forests model using instrumental variable quantile regression

We propose an econometric procedure based mainly on the generalized random forests method. Not only does this process estimate the quantile treatment effect nonparametrically, but our procedure yields a measure of variable importance in terms of heterogeneity among control variables. We also apply the proposed procedure to reinvestigate the distributional effect of 401(k) participation on net financial assets, and the quantile earnings effect of participating in a job training program.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 7 ; Year: 2019 ; Issue: 4 ; Pages: 1-22 ; Basel: MDPI

Classification
Wirtschaft
Subject
causal machine learning
instrumental variable
quantile regression
quantile treatment effect
random forests

Event
Geistige Schöpfung
(who)
Chen, Jau-er
Hsiang, Chen-Wei
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2019

DOI
doi:10.3390/econometrics7040049
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Chen, Jau-er
  • Hsiang, Chen-Wei
  • MDPI

Time of origin

  • 2019

Other Objects (12)