Arbeitspapier
Decentralization estimators for instrumental variable quantile regression models
The instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2005) is a popular tool for estimating causal quantile effects with endogenous covariates. However, estimation is complicated by the non-smoothness and non-convexity of the IVQR GMM objective function. This paper shows that the IVQR estimation problem can be decomposed into a set of conventional quantile regression sub-problems which are convex and can be solved efficiently. This reformulation leads to new identification results and to fast, easy to implement, and tuning-free estimators that do not require the availability of high-level "black box" optimization routines.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP42/19
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
quantile regression
contraction mapping
fixed pointestimator
bootstrap
Wüthrich, Kaspar
- DOI
-
doi:10.1920/wp.cem.2019.4219
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:20 MESZ
Objekttyp
- Arbeitspapier
Beteiligte
- Kaido, Hiroaki
- Wüthrich, Kaspar
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2019