Artikel

Bayesian bandwidth selection for a nonparametric regression model with mixed types of regressors

This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We derive an approximate likelihood and posterior for bandwidth parameters, followed by a sampling algorithm. Simulation results show that the proposed approach typically leads to better accuracy of the resulting estimates than cross-validation, particularly for smaller sample sizes. This bandwidth estimation approach is applied to nonparametric regression model of the Australian All Ordinaries returns and the kernel density estimation of gross domestic product (GDP) growth rates among the organisation for economic co-operation and development (OECD) and non-OECD countries.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 2 ; Pages: 1-27 ; Basel: MDPI

Klassifikation
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Thema
cross-validation
Nadaraya-Watson estimator
posterior predictive density
random-walk Metropolis
unknown error density
value-at-risk

Ereignis
Geistige Schöpfung
(wer)
Zhang, Xibin
King, Maxwell L.
Shang, Han Lin
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2016

DOI
doi:10.3390/econometrics4020024
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Zhang, Xibin
  • King, Maxwell L.
  • Shang, Han Lin
  • MDPI

Entstanden

  • 2016

Ähnliche Objekte (12)