Split Questionnaire Designs for Online Surveys: The Impact of Module Construction on Imputation Quality

Abstract: Established face-to-face surveys encounter increasing pressures to move online. Such a mode switch is accompanied with methodological challenges, including the need to shorten the questionnaire that each respondent receives. Split Questionnaire Designs (SQDs) randomly assign respondents to different fractions of the full questionnaire (modules) and, subsequently, impute the data that are missing by design. Thereby, SQDs reduce the questionnaire length for each respondent. Although some researchers have studied the theoretical implications of SQDs, we still know little about their performance with real data, especially regarding potential approaches to constructing questionnaire modules. In a Monte Carlo study with real survey data, we simulate SQDs in three module-building approaches: random, same topic, and diverse topics. We find that SQDs introduce bias and variability in univariate and especially in bivariate distributions, particularly when modules are constructed with items o

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Postprint
begutachtet (peer reviewed)
In: Journal of Survey Statistics and Methodology (2022) OnlineFirst ; 1-27

Klassifikation
Sozialwissenschaften, Soziologie, Anthropologie

Ereignis
Veröffentlichung
(wo)
Mannheim
(wer)
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
(wann)
2022
Urheber
Axenfeld, Julian B.
Blom, Annelies G.
Bruch, Christian
Wolf, Christof

DOI
10.1093/jssam/smab055
URN
urn:nbn:de:101:1-2023072609391941342330
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:54 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Axenfeld, Julian B.
  • Blom, Annelies G.
  • Bruch, Christian
  • Wolf, Christof
  • SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.

Entstanden

  • 2022

Ähnliche Objekte (12)