Arbeitspapier
Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation
Smallholder farming dominates agriculture in poorer countries. Yet, traditional recall-based surveys on smallholder farming in these countries face challenges with seasonal variations, high survey costs, poor record-keeping, and technical capacity constraints resulting in significant recall bias. We offer the first study that employs a less-costly, imputation-based alternative using mixed modes of data collection to obtain estimates on smallholder farm labor. Using data from Tanzania, we find that parsimonious imputation models based on small samples of a benchmark weekly inperson survey can offer reasonably accurate estimates. Furthermore, we also show how less accurate, but also less resource-intensive, imputation-based measures using a weekly phone survey may provide a viable alternative for the more costly weekly in-person survey. If replicated in other contexts, including for other types of variables that suffer from similar recall bias, these results could open up a new and cost-effective way to collect more accurate data at scale.
- Sprache
-
Englisch
- Erschienen in
-
Series: IZA Discussion Papers ; No. 14997
- Klassifikation
-
Wirtschaft
Microeconomic Analyses of Economic Development
Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
- Thema
-
farm labor
agricultural productivity
multiple imputation
missing data
survey data
Tanzania
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dang, Hai-Anh
Carletto, Calogero
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute of Labor Economics (IZA)
- (wo)
-
Bonn
- (wann)
-
2022
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Dang, Hai-Anh
- Carletto, Calogero
- Institute of Labor Economics (IZA)
Entstanden
- 2022