Artikel
Debiased/double machine learning for instrumental variable quantile regressions
In this study, we investigate the estimation and inference on a low-dimensional causal parameter in the presence of high-dimensional controls in an instrumental variable quantile regression. Our proposed econometric procedure builds on the Neyman-type orthogonal moment conditions of a previous study (Chernozhukov et al. 2018) and is thus relatively insensitive to the estimation of the nuisance parameters. The Monte Carlo experiments show that the estimator copes well with high-dimensional controls. We also apply the procedure to empirically reinvestigate the quantile treatment effect of 401(k) participation on accumulated wealth.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 2 ; Pages: 1-18 ; Basel: MDPI
- Classification
-
Wirtschaft
- Subject
-
double machine learning
instrumental variable
lasso
quantile regression
quantile treatment effect
- Event
-
Geistige Schöpfung
- (who)
-
Chen, Jau-er
Huang, Chien-Hsun
Tien, Jia-Jyun
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2021
- DOI
-
doi:10.3390/econometrics9020015
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Chen, Jau-er
- Huang, Chien-Hsun
- Tien, Jia-Jyun
- MDPI
Time of origin
- 2021