Artikel

Debiased/double machine learning for instrumental variable quantile regressions

In this study, we investigate the estimation and inference on a low-dimensional causal parameter in the presence of high-dimensional controls in an instrumental variable quantile regression. Our proposed econometric procedure builds on the Neyman-type orthogonal moment conditions of a previous study (Chernozhukov et al. 2018) and is thus relatively insensitive to the estimation of the nuisance parameters. The Monte Carlo experiments show that the estimator copes well with high-dimensional controls. We also apply the procedure to empirically reinvestigate the quantile treatment effect of 401(k) participation on accumulated wealth.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 2 ; Pages: 1-18 ; Basel: MDPI

Classification
Wirtschaft
Subject
double machine learning
instrumental variable
lasso
quantile regression
quantile treatment effect

Event
Geistige Schöpfung
(who)
Chen, Jau-er
Huang, Chien-Hsun
Tien, Jia-Jyun
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/econometrics9020015
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Chen, Jau-er
  • Huang, Chien-Hsun
  • Tien, Jia-Jyun
  • MDPI

Time of origin

  • 2021

Other Objects (12)