Arbeitspapier

Estimating poverty and inequality indicators using interval censored income data from the German microcensus

Rising poverty and inequality increases the risk of social instability in countries all around the world. For measuring poverty and inequality there exists a variety of statistical indicators. Estimating these indicators is trivial as long as the income variable is measured on a metric scale. However, estimation is not possible, using standard formulas, when the income variable is interval censored (or grouped), as in the German Microcensus. This is the case for numerous censuses due to confidentiality constraints or in order to decrease item non-response. To enable the estimation of statistical indicators in these scenarios, we propose an iterative kernel density algorithm that generates metric pseudo samples from the interval censored income variable. Based on these pseudo samples, poverty and inequality indicators are estimated. The standard errors of the indicators are estimated by a non-parametric bootstrap. Simulation results demonstrate that poverty and inequality indicators from interval censored data can be unbiasedly estimated by the proposed kernel density algorithm. Also the standard errors are correctly estimated by the non-parametric bootstrap. The kernel density algorithm is applied in this work to estimate regional poverty and inequality indicators from German Microcensus data. The results show the regional distribution of poverty and inequality in Germany.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 2018/10

Klassifikation
Wirtschaft
Thema
direct estimation
interval censored data
grouped data
poverty
inequality
kernel density estimation
German Microcensus

Ereignis
Geistige Schöpfung
(wer)
Walter, Paul
Weimer, Katja
Ereignis
Veröffentlichung
(wer)
Freie Universität Berlin, School of Business & Economics
(wo)
Berlin
(wann)
2018

Handle
URN
urn:nbn:de:kobv:188-refubium-22216-8
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Walter, Paul
  • Weimer, Katja
  • Freie Universität Berlin, School of Business & Economics

Entstanden

  • 2018

Ähnliche Objekte (12)