Arbeitspapier

Recovering Income Distribution in the Presence of Interval-Censored Data

This paper proposes a method to analyze interval-censored data, using multiple imputation based on a heteroskedastic interval regression approach. The proposed model aims to obtain a synthetic data set that can be used for standard analysis, including standard linear regression, quantile regression, or poverty and inequality estimation. The paper presents two applications to show the performance of the method. First, it runs a Monte Carlo simulation to show the method's performance under the assumption of multiplicative heteroskedasticity, with and without conditional normality. Second, it uses the proposed methodology to analyze labor income data in Grenada for 2013–20, where the salary data are interval-censored according to the salary intervals prespecified in the survey questionnaire. The results obtained are consistent across both exercises.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 15921

Klassifikation
Wirtschaft
Statistical Simulation Methods: General
Multiple or Simultaneous Equation Models: Truncated and Censored Models; Switching Regression Models
Thema
interval-censored data
Monte Carlo simulation
heteroskedastic interval regression
wages

Ereignis
Geistige Schöpfung
(wer)
Canavire Bacarreza, Gustavo J.
Rios-Avila, Fernando
Sacco-Capurro, Flavia
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Canavire Bacarreza, Gustavo J.
  • Rios-Avila, Fernando
  • Sacco-Capurro, Flavia
  • Institute of Labor Economics (IZA)

Entstanden

  • 2023

Ähnliche Objekte (12)