Arbeitspapier

Asymptotically efficient estimation of weighted average derivatives with an interval censored variable

This paper studies the identification and estimation of weighted average derivatives of conditional location functionals including conditional mean and conditional quantiles in settings where either the outcome variable or a regressor is interval-valued. Building on Manski and Tamer (2002) who study nonparametric bounds for mean regression with interval data, we characterize the identified set of weighted average derivatives of regression functions. Since the weighted average derivatives do not rely on parametric specifications for the regression functions, the identified set is well-defined without any parametric assumptions. Under general conditions, the identified set is compact and convex and hence admits characterization by its support function. Using this characterization, we derive the semiparametric efficiency bound of the support function when the outcome variable is interval-valued. We illustrate efficient estimation by constructing an efficient estimator of the support function for the case of mean regression with an interval censored outcome.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP03/14

Klassifikation
Wirtschaft
Thema
Partial Identification
Weighted Average Derivative
Semiparametric Efficiency
Support Function
Interval Data

Ereignis
Geistige Schöpfung
(wer)
Kaido, Hirokai
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2014

DOI
doi:10.1920/wp.cem.2014.0314
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kaido, Hirokai
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2014

Ähnliche Objekte (12)