Arbeitspapier

Estimation of linear and non-linear indicators using interval censored income data

Among a variety of small area estimation methods, one popular approach for the estimation of linear and non-linear indicators is the empirical best predictor. However, parameter estimation using standard maximum likelihood methods is not possible, when the dependent variable of the underlying nested error regression model, is censored to specific intervals. This is often the case for income variables. Therefore, this work proposes an estimation method, which enables the estimation of the regression parameters of the nested error regression model using interval censored data. The introduced method is based on the stochastic expectation maximization algorithm. Since the stochastic expectation maximization method relies on the Gaussian assumptions of the error terms, transformations are incorporated into the algorithm to handle departures from normality. The estimation of the mean squared error of the empirical best predictors is facilitated by a parametric bootstrap which captures the additional uncertainty coming from the interval censored dependent variable. The validity of the proposed method is validated by extensive model-based simulations.

Sprache
Englisch

Erschienen in
Series: Diskussionsbeiträge ; No. 2017/22

Klassifikation
Wirtschaft
Thema
small area estimation
empirical best predictor
nested error regression model
grouped data

Ereignis
Geistige Schöpfung
(wer)
Walter, Paul
Groß, Markus
Schmid, Timo
Tzavidis, Nikos
Ereignis
Veröffentlichung
(wer)
Freie Universität Berlin, Fachbereich Wirtschaftswissenschaft
(wo)
Berlin
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Walter, Paul
  • Groß, Markus
  • Schmid, Timo
  • Tzavidis, Nikos
  • Freie Universität Berlin, Fachbereich Wirtschaftswissenschaft

Entstanden

  • 2017

Ähnliche Objekte (12)