Designed miniaturization of microfluidic biosensor platforms using the stop-flow technique
Abstract: Here, we present a novel approach to increase the degree of miniaturization as well as the sensitivity of biosensor platforms by the optimization of microfluidic stop-flow techniques independent of the applied detection technique (e.g. electrochemical or optical). The readout of the labeled bioassays, immobilized in a microfluidic channel, under stop-flow conditions leads to a rectangular shaped peak signal. Data evaluation using the peak height allows for a high level miniaturization of the channel geometries. To study the main advantages and limitations of this method by numerical simulations, a universally applicable model system is introduced for the first time. Consequently, proof-of-principle experiments were successfully performed with standard and miniaturized versions of an electrochemical biosensor platform utilizing a repressor protein-based assay for tetracycline antibiotics. Herein, the measured current peak heights are the same despite the sextuple reduction of the channel dimensions. Thus, this results in a 22-fold signal amplification compared to the constant flow measurements in the case of the miniaturized version
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Analyst. 141 (2016), article id 6073. DOI 10.1039/C6AN01330A, issn: 1364-5528
IN COPYRIGHT http://rightsstatements.org/page/InC/1.0 rs
- Klassifikation
-
Biowissenschaften, Biologie
- Schlagwort
-
Mikrofluidik
Elektrochemie
Amperometrie
Antibiotikum
Tetracycline
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2016
- Beteiligte Personen und Organisationen
-
Freiburger Materialforschungszentrum
Institut für Mikrosystemtechnik
BIOSS Centre for Biological Signalling Studies
Fakultät für Biologie
Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany
Technische Fakultät
Albert-Ludwigs-Universität Freiburg
- DOI
-
10.1039/C6AN01330A
- URN
-
urn:nbn:de:bsz:25-freidok-118122
- Rechteinformation
-
Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:46 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Dincer, Can
- Kling, André
- Chatelle, Claire
- Armbrecht, Lucas
- Kieninger, Jochen
- Weber, Wilfried
- Urban, Gerald A.
- Freiburger Materialforschungszentrum
- Institut für Mikrosystemtechnik
- BIOSS Centre for Biological Signalling Studies
- Fakultät für Biologie
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany
- Technische Fakultät
- Albert-Ludwigs-Universität Freiburg
- Universität
Entstanden
- 2016