Arbeitspapier

Optimal design for goodness-of-fit of the Michaelis-Menten enzyme kinetic function

We construct efficient designs for the Michaelis-Menten enzyme kinetic model capable of checking model assumption. An extended model, called EMAX model is also considered for this purpose. This model is widely used in pharmacokinetics and reduces to the Michaelis- Menten model for a specific choice of the parameter setting. Our strategy is to find efficient designs for estimating the parameters in the EMAX model and at the same time test the validity of the Michaelis-Menten model against the EMAX model by maximizing a minimum of the D- or D1-efficiencies taken over a range of values for the nonlinear parameters. In addition, we show that the designs obtained from maximizing the D-efficiencies are (i) efficient for estimating parameters in the EMAX model or the Michaelis-Menten model, (ii) efficient for testing the Michaelis-Menten model against the EMAX model and (iii) robust with respect to misspecification of the unknown parameters.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2004,24

Subject
Chebyshev polynomials
EMAX model
goodness of fit test
locally D-optimal design
robust optimal design
Statistischer Test
Theorie

Event
Geistige Schöpfung
(who)
Wong, Weng Kee
Melas, Viatcheslav B.
Dette, Holger
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2004

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Wong, Weng Kee
  • Melas, Viatcheslav B.
  • Dette, Holger
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2004

Other Objects (12)