Artikel

Forecasting GDP all over the world using leading indicators based on comprehensive survey data

Comprehensive and international comparable leading indicators across countries and continents are rare. In this paper, we use a free and instantaneous available source of leading indicators, the ifo World Economic Survey (WES), to forecast growth of Gross Domestic Product (GDP) in 44 countries and three country aggregates separately. We come up with three major results. First, for more than three-fourths of the countries or country-aggregates in our sample, a model containing one of the major WES indicators produces on average lower forecast errors compared to a benchmark model. Second, the most important WES indicators are either the economic climate or the expectations on future economic development for the next six months. And third, adding the WES indicators of the main trading partners leads to a further increase in forecast accuracy in more than 50% of the countries. It seems therefore reasonable to incorporate economic signals from the domestic economy’s main trading partners.

Sprache
Englisch

Erschienen in
Journal: Applied Economics ; ISSN: 1466-4283 ; Volume: 51 ; Year: 2019 ; Issue: 54 ; Pages: 5802-5816 ; London: Routledge

Klassifikation
Wirtschaft
General Aggregative Models: Forecasting and Simulation: Models and Applications
Macroeconomics: Consumption, Saving, Production, Employment, and Investment: Forecasting and Simulation: Models and Applications
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
World economic survey
Economic Climate
Forecasting GDP

Ereignis
Geistige Schöpfung
(wer)
Garnitz, Johanna
Lehmann, Robert
Wohlrabe, Klaus
Ereignis
Veröffentlichung
(wer)
Routledge
(wo)
London
(wann)
2019

DOI
doi:10.1080/00036846.2019.1624915
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Garnitz, Johanna
  • Lehmann, Robert
  • Wohlrabe, Klaus
  • Routledge

Entstanden

  • 2019

Ähnliche Objekte (12)