Konferenzbeitrag
Forecasting GDP at the regional level with many predictors
In this paper, we assess the accuracy of macroeconomic forecasts at the regional level using a large data set at quarterly frequency. We forecast gross domestic product (GDP) for two German states (Free State of Saxony and Baden-Württemberg) and Eastern Germany. We overcome the problem of a ?data-poor environment? at the sub-national level by complementing various regional indicators with more than 200 national and international ones. We calculate single?indicator, multi?indicator, pooled and factor forecasts in a pseudo real?time setting. Our results show that we can significantly increase forecast accuracy compared to an autoregressive benchmark model, both for short and long term predictions. Furthermore, regional indicators play a crucial role for forecasting regional GDP. Keywords: regional forecasting, forecast combination, factor models, model confidence set, data?rich environment JEL Code: C32, C52, C53, E37, R11
- Sprache
-
Englisch
- Erschienen in
-
Series: 53rd Congress of the European Regional Science Association: "Regional Integration: Europe, the Mediterranean and the World Economy", 27-31 August 2013, Palermo, Italy
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
- Thema
-
LEADING INDICATORS
REGIONAL FORECASTING
FORECAST EVALUATION
FORECAST COMBINATION
DATA RICH ENVIRONMENT
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Lehmann, Robert
Wohlrabe, Klaus
- Ereignis
-
Veröffentlichung
- (wer)
-
European Regional Science Association (ERSA)
- (wo)
-
Louvain-la-Neuve
- (wann)
-
2013
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Lehmann, Robert
- Wohlrabe, Klaus
- European Regional Science Association (ERSA)
Entstanden
- 2013