Arbeitspapier

Forecasting long memory time series under a break in persistence

We consider the problem of forecasting time series with long memory when the memory parameter is subject to a structural break. By means of a large-scale Monte Carlo study we show that ignoring such a change in persistence leads to substantially reduced forecasting precision. The strength of this effect depends on whether the memory parameter is increasing or decreasing over time. A comparison of six forecasting strategies allows us to conclude that pre-testing for a change in persistence is highly recommendable in our setting. In addition we provide an empirical example which underlines the importance of our findings.

Language
Englisch

Bibliographic citation
Series: Diskussionsbeitrag ; No. 433

Classification
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Forecasting Models; Simulation Methods
Subject
Zeitreihenanalyse
Strukturbruch
Simulation
Prognoseverfahren

Event
Geistige Schöpfung
(who)
Heinen, Florian
Sibbertsen, Philipp
Kruse, Robinson
Event
Veröffentlichung
(who)
Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
(where)
Hannover
(when)
2009

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Heinen, Florian
  • Sibbertsen, Philipp
  • Kruse, Robinson
  • Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät

Time of origin

  • 2009

Other Objects (12)