Arbeitspapier
Forecasting long memory time series under a break in persistence
We consider the problem of forecasting time series with long memory when the memory parameter is subject to a structural break. By means of a large-scale Monte Carlo study we show that ignoring such a change in persistence leads to substantially reduced forecasting precision. The strength of this effect depends on whether the memory parameter is increasing or decreasing over time. A comparison of six forecasting strategies allows us to conclude that pre-testing for a change in persistence is highly recommendable in our setting. In addition we provide an empirical example which underlines the importance of our findings.
- Language
-
Englisch
- Bibliographic citation
-
Series: Diskussionsbeitrag ; No. 433
- Classification
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Forecasting Models; Simulation Methods
- Subject
-
Zeitreihenanalyse
Strukturbruch
Simulation
Prognoseverfahren
- Event
-
Geistige Schöpfung
- (who)
-
Heinen, Florian
Sibbertsen, Philipp
Kruse, Robinson
- Event
-
Veröffentlichung
- (who)
-
Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
- (where)
-
Hannover
- (when)
-
2009
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Heinen, Florian
- Sibbertsen, Philipp
- Kruse, Robinson
- Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
Time of origin
- 2009