Arbeitspapier

Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity

The sum of squared intraday returns provides an unbiased and almost error-free measure of ex-post volatility. In this paper we develop a nonlinear Autoregressive Fractionally Integrated Moving Average (ARFIMA) model for realized volatility, which accommodates level shifts, day-of-the-week effects, leverage effects and volatility level effects. Applying the model to realized volatilities of the S&P 500 stock index and three exchange rates produces forecasts that clearly improve upon the ones obtained from a linear ARFIMA model and from conventional time-series models based on daily returns, treating volatility as a latent variable.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 04-067/4

Classification
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Forecasting Models; Simulation Methods
International Financial Markets
Subject
Realized volatility
high-frequency data
long memory
day-of-the-week effect
leverage effect
volatility forecasting
smooth transition
Börsenkurs
Volatilität
Strukturbruch
Zeitreihenanalyse
Stochastischer Prozess
Theorie
ARMA-Modell

Event
Geistige Schöpfung
(who)
Martens, Martin
van Dijk, Dick
de Pooter, Michiel
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2004

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Martens, Martin
  • van Dijk, Dick
  • de Pooter, Michiel
  • Tinbergen Institute

Time of origin

  • 2004

Other Objects (12)