Arbeitspapier
Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity
The sum of squared intraday returns provides an unbiased and almost error-free measure of ex-post volatility. In this paper we develop a nonlinear Autoregressive Fractionally Integrated Moving Average (ARFIMA) model for realized volatility, which accommodates level shifts, day-of-the-week effects, leverage effects and volatility level effects. Applying the model to realized volatilities of the S&P 500 stock index and three exchange rates produces forecasts that clearly improve upon the ones obtained from a linear ARFIMA model and from conventional time-series models based on daily returns, treating volatility as a latent variable.
- Language
-
Englisch
- Bibliographic citation
-
Series: Tinbergen Institute Discussion Paper ; No. 04-067/4
- Classification
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Forecasting Models; Simulation Methods
International Financial Markets
- Subject
-
Realized volatility
high-frequency data
long memory
day-of-the-week effect
leverage effect
volatility forecasting
smooth transition
Börsenkurs
Volatilität
Strukturbruch
Zeitreihenanalyse
Stochastischer Prozess
Theorie
ARMA-Modell
- Event
-
Geistige Schöpfung
- (who)
-
Martens, Martin
van Dijk, Dick
de Pooter, Michiel
- Event
-
Veröffentlichung
- (who)
-
Tinbergen Institute
- (where)
-
Amsterdam and Rotterdam
- (when)
-
2004
- Handle
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Martens, Martin
- van Dijk, Dick
- de Pooter, Michiel
- Tinbergen Institute
Time of origin
- 2004