Arbeitspapier
Testing for multiple structural breaks in multivariate long memory time series
This paper considers estimation and testing of multiple breaks that occur at unknown dates in multivariate long-memory time series. We propose a likelihood ratio based approach for estimating breaks in the mean and the covariance of a system of long-memory time series. The limiting distribution of these estimates as well as consistency of the estimators is derived. A testing procedure to determine the unknown number of break points is given based on iterative testing on the regression residuals. A Monte Carlo exercise shows the finite sample performance of our method. An empirical application to inflation series illustrates the usefulness of our procedures.
- Sprache
-
Englisch
- Erschienen in
-
Series: Hannover Economic Papers (HEP) ; No. 676
- Klassifikation
-
Wirtschaft
Hypothesis Testing: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Financial Econometrics
International Financial Markets
- Thema
-
Multivariate Long Memory
Multiple Structural Breaks
Hypothesis Testing
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Sibbertsen, Philipp
Wenger, Kai
Wingert, Simon
- Ereignis
-
Veröffentlichung
- (wer)
-
Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
- (wo)
-
Hannover
- (wann)
-
2020
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Sibbertsen, Philipp
- Wenger, Kai
- Wingert, Simon
- Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
Entstanden
- 2020