Arbeitspapier
Extremal Quantile Regressions for Selection Models and the Black-White Wage Gap
We consider the estimation of a semiparametric location-scale model subject to endogenous selection, in the absence of an instrument or a large support regressor. Identification relies on the independence between the covariates and selection, for arbitrarily large values of the outcome. In this context, we propose a simple estimator, which combines extremal quantile regressions with minimum distance. We establish the asymptotic normality of this estimator by extending previous results on extremal quantile regressions to allow for selection. Finally, we apply our method to estimate the black-white wage gap among males from the NLSY79 and NLSY97. We find that premarket factors such as AFQT and family background characteristics play a key role in explaining the level and evolution of the black-white wage gap.
- Sprache
-
Englisch
- Erschienen in
-
Series: IZA Discussion Papers ; No. 8256
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
Wage Level and Structure; Wage Differentials
- Thema
-
sample selection models
extremal quantile regressions
black-white wage gap
- Ereignis
-
Geistige Schöpfung
- (wer)
-
D'Haultfœuille, Xavier
Maurel, Arnaud
Zhang, Yichong
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute for the Study of Labor (IZA)
- (wo)
-
Bonn
- (wann)
-
2014
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- D'Haultfœuille, Xavier
- Maurel, Arnaud
- Zhang, Yichong
- Institute for the Study of Labor (IZA)
Entstanden
- 2014