Arbeitspapier

Least squares model averaging by prediction criterion

This paper proposes a new estimator for least squares model averaging. A model average estimator is a weighted average of common estimates obtained from a set of models. We propose computing weights by minimizing a model average prediction criterion (MAPC). We prove that the MAPC estimator is asymptotically optimal in the sense of achieving the lowest possible mean squared error. For statistical inference, we derive asymptotic tests for single hypotheses and joint hypotheses on the average coefficients for the core regressors. These regressors are of primary interest to us and are included in every approximation model. To improve the finite sample performance, we also consider bootstrap tests. In simulation experiments the MAPC estimator is shown to have significant efficiency gains over existing model selection and model averaging methods. We also show that the bootstrap tests have more reasonable rejection frequency than the asymptotic tests in small samples. As an empirical illustration, we apply the MAPC estimator to cross-country economic growth models.

Sprache
Englisch

Erschienen in
Series: Queen's Economics Department Working Paper ; No. 1299

Klassifikation
Wirtschaft
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Economic Growth and Aggregate Productivity: General
Thema
Model Averaging
MAPC
Convex Optimization
Optimality
Statistical Inference

Ereignis
Geistige Schöpfung
(wer)
Xie, Tian
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Xie, Tian
  • Queen's University, Department of Economics

Entstanden

  • 2012

Ähnliche Objekte (12)