Artikel

Forecast Bitcoin volatility with least squares model averaging

In this paper, we study forecasting problems of Bitcoin-realized volatility computed on data from the largest crypto exchange-Binance. Given the unique features of the crypto asset market, we find that conventional regression models exhibit strong model specification uncertainty. To circumvent this issue, we suggest using least squares model-averaging methods to model and forecast Bitcoin volatility. The empirical results demonstrate that least squares model-averaging methods in general outperform many other conventional regression models that ignore specification uncertainty.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 7 ; Year: 2019 ; Issue: 3 ; Pages: 1-20 ; Basel: MDPI

Classification
Wirtschaft
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Asset Pricing; Trading Volume; Bond Interest Rates
Financial Forecasting and Simulation
Subject
crypto currency
HAR
model averaging
model uncertainty
volatility forecasting

Event
Geistige Schöpfung
(who)
Xie, Tian
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2019

DOI
doi:10.3390/econometrics7030040
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Xie, Tian
  • MDPI

Time of origin

  • 2019

Other Objects (12)