Artikel
Forecast Bitcoin volatility with least squares model averaging
In this paper, we study forecasting problems of Bitcoin-realized volatility computed on data from the largest crypto exchange-Binance. Given the unique features of the crypto asset market, we find that conventional regression models exhibit strong model specification uncertainty. To circumvent this issue, we suggest using least squares model-averaging methods to model and forecast Bitcoin volatility. The empirical results demonstrate that least squares model-averaging methods in general outperform many other conventional regression models that ignore specification uncertainty.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 7 ; Year: 2019 ; Issue: 3 ; Pages: 1-20 ; Basel: MDPI
- Classification
-
Wirtschaft
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Asset Pricing; Trading Volume; Bond Interest Rates
Financial Forecasting and Simulation
- Subject
-
crypto currency
HAR
model averaging
model uncertainty
volatility forecasting
- Event
-
Geistige Schöpfung
- (who)
-
Xie, Tian
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2019
- DOI
-
doi:10.3390/econometrics7030040
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Xie, Tian
- MDPI
Time of origin
- 2019