Arbeitspapier

Sheep in wolf's clothing: Using the least squares criterion for quantile estimation

Estimation of the quantile model, especially with a large data set, can be computationally burdensome. This paper proposes using the Gaussian approximation, also known as quantile coupling, to estimate a quantile model. The intuition of quantile coupling is to divide the original observations into bins with an equal number of observations, and then compute order statistics within these bins. The quantile coupling allows one to apply the standard Gaussian-based estimation and inference to the transformed data set. The resulting estimator is asymptotically normal with a parametric convergence rate. A key advantage of this method is that it is faster than the conventional check function approach, when handling a sizable data set.

Sprache
Englisch

Erschienen in
Series: Bank of Canada Working Paper ; No. 2014-24

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
Econometric and statistical methods

Ereignis
Geistige Schöpfung
(wer)
Chen, Heng
Ereignis
Veröffentlichung
(wer)
Bank of Canada
(wo)
Ottawa
(wann)
2014

DOI
doi:10.34989/swp-2014-24
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Heng
  • Bank of Canada

Entstanden

  • 2014

Ähnliche Objekte (12)