Arbeitspapier

Weighted-average least squares (WALS): Confidence and prediction intervals

We extend the results of De Luca et al. (2021) to inference for linear regression models based on weighted-average least squares (WALS), a frequentist model averaging approach with a Bayesian flavor. We concentrate on inference about a single focus parameter, interpreted as the causal effect of a policy or intervention, in the presence of a potentially large number of auxiliary parameters representing the nuisance component of the model. In our Monte Carlo simulations we compare the performance of WALS with that of several competing estimators, including the unrestricted least-squares estimator (with all auxiliary regressors) and the restricted least-squares estimator (with no auxiliary regressors), two post-selection estimators based on alternative model selection criteria (the Akaike and Bayesian information criteria), various versions of frequentist model averaging estimators (Mallows and jackknife), and one version of a popular shrinkage estimator (the adaptive LASSO). We discuss confidence intervals for the focus parameter and prediction intervals for the outcome of interest, and conclude that the WALS approach leads to superior confidence and prediction intervals, but only if we apply a bias correction.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2021-038/III

Klassifikation
Wirtschaft
Bayesian Analysis: General
Hypothesis Testing: General
Methodological Issues: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Model Evaluation, Validation, and Selection
Thema
post-selection estimators
adaptive lasso
frequentist model averaging
WALS
confidence intervals
prediction intervals
Monte Carlo simulations

Ereignis
Geistige Schöpfung
(wer)
De Luca, Giuseppe
Magnus, Jan R.
Peracchi, Franco
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • De Luca, Giuseppe
  • Magnus, Jan R.
  • Peracchi, Franco
  • Tinbergen Institute

Entstanden

  • 2021

Ähnliche Objekte (12)