Arbeitspapier

Kernel block bootstrap

This article introduces and investigates the properties of a new bootstrap method for time-series data, the kernel block bootstrap. The bootstrap method, although akin to, offers an improvement over the tapered block bootstrap of Paparoditis and Politis (2001), admitting kernels with unbounded support. Given a suitable choice of kernel, a kernel block bootstrap estimator of the spectrum at zero asymptotically close to the optimal Parzen (1957) estimator is possible. The paper shows the large sample validity of the kernel block bootstrap and derives the higher order bias and variance of the kernel block bootstrap variance estimator. Like the tapered block bootstrap variance estimator, the kernel block bootstrap estimator has a favourable higher order bias property. Simulations based on the designs of Paparoditis and Politis (2001) indicate that the kernel block bootstrap may be efficacious in practice.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP48/18

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
Bias
Confidence Interval
Resampling
Kernel function
Spectral density estimation
Time Series
Variance estimation

Ereignis
Geistige Schöpfung
(wer)
Parente, Paulo M. D. C.
Smith, Richard J.
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2018

DOI
doi:10.1920/wp.cem.2018.4818
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Parente, Paulo M. D. C.
  • Smith, Richard J.
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2018

Ähnliche Objekte (12)